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Abstract
We provide and discuss the general solution of a (Hamiltonian) three-body
problem in the plane, characterized by Newtonian equations of motion with
rotation- and translation-invariant velocity-dependent one-body and two-body
forces. The model features a (nonnegative) real parameter ω: when it does not
vanish, all solutions are completely periodic with period T = 2π/ω; when it
vanishes, both unbounded and confined motions are possible with a rather rich
phenomenology of possible behaviour in the latter case, including completely
periodic motions and limit cycles.

PACS numbers: 02.30.Ik, 45.50.Jf

1. Introduction and main result

Recently much interest has been focused [1–3] on the N -body problem in the plane
characterized by the following Newtonian equations of motion:

�̈rn = ωk̂ ∧ �̇rn + 2
N∑

m=1,m�=n

(rnm)−2(αnm + α′
nmk̂∧)[�̇rn(�̇rm · �rnm) + �̇rm(�̇rn · �rnm) − �rnm(�̇rn · �̇rm)].

(1.1a)

Here the N 2-vectors �rn ≡ �rn(t) identify the positions of the moving point-particles in a
plane which for notational convenience is immersed in three-dimensional space, so that
�rn ≡ (xn, yn, 0); k̂ is the unit 3-vector orthogonal to that plane, k̂ ≡ (0, 0, 1), so that
k̂ ∧ �rn ≡ (−yn, xn, 0);

�rnm ≡ �rn − �rm r2
nm = r2

n + r2
m − 2�rn · �rm (1.1b)

superimposed dots denote of course time derivatives; and the parameter ω is of course real
(indeed, without loss of generality, nonnegative, ω � 0).

To treat this many-body problem it is generally convenient to identify the real ‘physical’
plane in which the points �rn ≡ (xn, yn, 0) move with the complex plane in which the complex
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numbers zn = xn + iyn move. Indeed via this correspondence the equations of motion (1.1)
take the following simpler form:

z̈n − iωżn = 2
N∑

m=1,m�=n

anmżnżm/(zn − zm) (1.2a)

with

anm = αnm + iα′
nm. (1.2b)

These equations of motion are evidently translation- and rotation-invariant, and they are
also Hamiltonian, provided the ‘coupling constants’ anm depend symmetrically on their two
indices, anm = amn [1–3]. When these coupling constants take special values the model
exhibits a particularly simple behaviour: for instance when the anm are all unity, anm = 1, the
equations of motion (1.1) (or equivalently (1.2)) are integrable and indeed solvable (‘goldfish’
model [2, 4, 5]).

In this paper we point out that, in the three-body case with the anm all equal to minus one
half, N = 3, anm = −1/2, the equations of motion (1.2a), which then read

z̈n − iωżn = −
3∑

m=1,m�=n

żnżm/(zn − zm) n = 1, 2, 3 (1.3)

can as well be solved, indeed in terms of elementary functions. The likelihood that this case
is exceptionally simple had already been pointed out [7], in a context that will be reviewed
below (see section 3). The fact that the general solution of this model is completely periodic
and indeed isochronous (iff the constant ω is real and it does not vanish) is a remarkable
consequence, as noted below (in section 2); but in this paper the case when this constant ω

vanishes, and the solutions display a richer phenomenology, is also discussed (see section 2).
Let us indeed emphasize that the substantive contribution of this paper is to provide in
completely explicit form the general solution of this three-body problem in the plane, not
merely to point out that this solution is (if ω is real and does not vanish) completely periodic
and indeed isochronous, which is just a consequence of the main result. (We thank a referee
for suggesting that this aspect be made crystal clear by adding the last two sentences of this
paragraph).

The general solution of these equations of motion reads

z1(t) = Z(τ) + ζ+(τ ) z2(t) = Z(τ) + ζ−(τ ) z3(t) = Z(τ) − ζ+(τ ) − ζ−(τ ) (1.4)

τ = [exp(iωt) − 1]/(iω) (1.5)

Z(τ) = Z(0) + V τ (1.6)

ζ±(τ ) = a cos(2λτ + 2α ± π/3) + b cos(λτ − β ∓ π/3) exp(−
√

3λτ)

± 2(a2/b) sin[2(α − β)] cos(λτ + 2α + β ± π/6) exp(
√

3λτ) (1.7)

λ = V/{2
√

3a sin[2(α + β) + π/6]}. (1.8)

Here Z(0), V , a, b, α, β are six arbitrary (complex) constants.
Formulae (1.4)–(1.8) provide the general solution of the equations of motion (1.3), since

they feature the maximal number, six, of arbitrary constants, so that this solution can fit
arbitrary initial data (the three initial positions, and the three initial velocities, of the three
particles).
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There are some solutions, featuring fewer arbitrary constants, which may be obtained as
special, or limiting, cases of this solution (1.4)–(1.8). For instance, for β = α (1.7) is clearly
replaced by

ζ±(τ ) = a cos(2λτ + 2α ± π/3) + b cos(λτ − α ∓ π/3) exp(−
√

3λτ). (1.9)

As can be readily verified, another special solution, which also features (only) five arbitrary
constants, z1(0), z2(0), z3(0), V , a, reads

z1(t) = z1(0) + 3
2 (V + w)τ + 1

2aτ 2

(1.10a)
z2(t) = z2(0) + 3

2 (V − w)τ − 1
2aτ 2 z3(t) = z3(0)

with

w2 = 2V 2 + 4
9a[z1(0) − z2(0)]. (1.10b)

Analogous solutions may of course be obtained by permutation of the particles.
And, as can be readily verified, another solution is given by (1.4) with (1.5), but with (1.6)

and (1.7) replaced by

Z(τ) = Z(0) (1.11)

ζ±(τ ) = ±a exp(ατ ± iπ/6) (1.12)

it features only three arbitrary constants: Z(0), a, α.
In section 2 we discuss the motion of the three particles in the plane, as described by these

solutions. In section 3 we explain how the general solution (1.4)–(1.8) has been arrived at.

2. Discussion

Firstly, let us report [1–3] the Hamiltonian that yields the equations of motion (1.3):

H(p, q) =
3∑

n=1


i(ω/k)qn + exp(kpn)


 3∏

m=1,m�=n

(qn − qm)




1/2

 . (2.1)

Here k is an arbitrary (nonvanishing, possibly complex) constant, and, as can be readily
verified, the (complex version (1.3) of the) equations of motion of our model are obtained in
the standard manner from this Hamiltonian, via the identification qn = zn. A real Hamiltonian
written in terms of the real 2-vectors �rn and yielding the real equations of motion in the plane,
see (1.1), can of course be obtained from (2.1) in the standard manner [2].

Secondly, let us point out that, as immediately implied by (1.3), the centre-of-mass

z̄(t) = [z1(t) + z2(t) + z3(t)]/3 (2.2a)

satisfies the linear equation of motion

¨̄z(t) − iω ˙̄z(t) = 0 (2.2b)

hence its time-evolution is given by the formula

z̄(t) = Z(τ) (2.2c)

with (1.5) and (1.6).
Thirdly, let us point out that relation (1.5) among the real ‘physical’ time t and the complex

time-like variable τ ≡ τ(t) clearly entails τ(0) = 0, τ̇ (0) = 1. Hence the solution (1.4)–(1.8)
is characterized by the following relations among the six constants Z(0), V , a, b, α, β and the
initial data:
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z1(0) = Z(0) + ζ+(0) z2(0) = Z(0) + ζ−(0) z3(0) = Z(0) − ζ+(0) − ζ−(0)

(2.3a)

ż1(0) = V + ζ ′
+(0) ż2(0) = V + ζ ′

−(0) ż3(0) = V − ζ ′
+(0) − ζ ′

−(0) (2.3b)

z̄(0) = Z(0) (2.3c)

ζ±(0) = a cos(2α ± π/3) + b cos(−β ∓ π/3) ± 2(a2/b) sin[2(α − β)] cos(2α + β ± π/6)

(2.3d )

ζ ′
±(0) = −λ{2a sin(2α ± π/3) + b sin(−β ∓ π/3) +

√
3 cos(−β ∓ π/3)

± 2(a2/b) sin[2(α − β)][sin(2α + β ± π/6) −
√

3 cos(2α + β ± π/6)]}
(2.3e)

with the constant λ always defined by (1.8). Analogous formulae for the special solutions
reported above, see (1.9)–(1.12), are easily obtained.

Fourthly, let us note that the general solution (1.4)–(1.8) can be generally represented as
the linear superposition of six exponentials in the complex variable τ . The explanation of this
remarkable fact is given in the following section.

Let us now provide a terse description of the behaviour of this three-body problem in the
plane.

If the parameter ω is positive, ω > 0, the behaviour is exceedingly simple: all solutions
are completely periodic with period T = 2π/ω. This is clear from the fact that the general
solution (1.4)–(1.8) is an entire function of (only) the (complex, time-like) variable τ , which is
itself a periodic function of the real ‘time’ variable t , see (1.5). This model provides therefore,
in this case, another example of ‘nonlinear harmonic oscillators’ [6].

If instead the parameter ω vanishes, ω = 0, the behaviour is richer: the rest of this section
is devoted to this case. Note that now the variable τ coincides with the time t , τ = t , see (1.5).
In this case the centre-of-mass moves as a free particle (linearly, with speed V , see (1.6)). It is
moreover clear that the generic solution, see ((1.4), (1.6)–(1.8)), is unbounded: generally, as
t → ∞, the three particles spiral outwardly to infinity with speeds that increase exponentially
with time at a rate characterized by the constant

ρ = Max{
√

3|Re[λ]| + |Im[λ]|, 2|Im[λ]|} (2.4)

see (1.7) and (1.8). There are, however, special solutions which remain confined for all (future)
times.

One such case is given by the special solution (1.4), (1.6), (1.8) and (1.9), provided the
constant λ is (real and) positive, λ > 0. Then clearly this solution features a limit cycle,
which is approached exponentially in time (with rate

√
3λ) and is completely periodic, with

period π/λ.
Another such case is given by the special solution (1.4), (1.11) and (1.12), provided the

constant α is purely imaginary, say α = i	 with 	 real. Then clearly this solution, the
centre-of-mass of which does not move, see (2.2c) and (1.11), is completely periodic with
period 2π/	.

Finally, a solution worth noting is (1.10), in which one particle does not move, while the
other two clearly move as if they were in the presence of a constant force, acting on them
with opposite signs. But because the standing particle does not influence the motion of the
other two particles (see (1.3)), this solution corresponds in fact rather to a two-body, than a
three-body, problem.
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3. Proof and history

Since the explicit formulae (1.4)–(1.8) provide the general solution of the equations of motion
(1.3), one could dispense with any additional discussion and simply require the diligent reader
to verify that (1.4)–(1.8) indeed satisfy (1.3). This would be inappropriate on two counts: it
would not explain how this solution has been discovered, and it would omit to allocate the due
credit for a remark that was essential to obtain this result. So let us provide a terse history of
the developments that led to the solution (1.4)–(1.8).

The first step is to recall [1–3] that, via the change of independent variable

zn(t) = ζn(τ ) (3.1)

with the new independent variable τ related to the time t by (1.5), the equations of motion
(1.2a) take the form

ζ ′′
n = 2

N∑
m=1,m�=n

anmζ ′
nζ

′
m/(ζn − ζm). (3.2)

Here, and throughout this paper, appended primes denote differentiations with respect to the
independent variable τ .

The analytic structure of the solutions ζn = ζn(τ ) of this system of coupled ODEs, (3.2),
is of much interest, both as a mathematical problem in its own right and because it clearly
determines, via (1.5), the behaviour of the many-body problem in the plane (1.1) [1–3]. This
structure depends on the number N of dependent variables ζn and on the values of the coupling
constants anm [3]. In particular, in the ‘three-body’ case (N = 3), there are three nontrivial
assignments of the coupling constants anm for which all solutions ζn = ζn(τ ) of (3.2) were
expected to be entire functions of the independent variable τ [7], a property that we called [7]
‘super-Painlevé’—in analogy to the standard terminology that attributes the ‘Painlevé property’
to any (autonomous) nonlinear ODE all solutions of which are meromorphic functions of the
independent variable.

The first of these three cases corresponds to the assignment of coupling constants
a12 = a21 = 0, a23 = a32 = a31 = a13 = −1/2 (of course, up to permutations of the
indices). Then the equations of motion (3.2) can be solved explicitly and the general solution
turns out to be extremely simple, indeed the functions ζn(τ ) are just third-degree polynomials
in the independent variable τ [7].

The second of these three cases corresponds to the assignment of coupling constants
a12 = a21 = 0, a23 = a32 = −1/2, a31 = a13 = −1 (again, up to permutations). Then from the
system of three coupled ODEs (3.2), the following two versions (related to each other by
nontrivial differential substitutions) of a single third-order nonlinear ODE were obtained [7]:

(y ′′′)2(y ′ + V ) − y ′′′(y ′′)2 − ky ′′[3y ′′y − 2(y ′ + V )(y ′ − 2V )] = 0 y ≡ y(τ) (3.3)

8(x ′′′)2(x ′ + V )2(x ′ − 2V ) + 2x ′′′[−(x ′′)2(7x ′ − 8V ) + 9kx ′(x ′ + V )x](x ′ + V )

+ 3(x ′′)4(2x ′ − V ) − 3k(x ′′)2(x ′ + V )(5x ′ + 2V )x

− 2kx ′′(x ′ + V )2(x ′ + 4V )2 + 9k2(x ′ + V )3x2 = 0 x ≡ x(τ). (3.4)

Each of these two third-order autonomous ODEs features the two arbitrary constants V, k,
which—whenever they do not vanish—could clearly be replaced by unity via a ‘cosmetic’
rescaling of (dependent and independent) variables. For the reasons stated above, it is
expected that each of these two third-order nonlinear ODEs is endowed with the super-Painlevé
property [7].
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In a previous (version of this) paper [8] we considered the third case identified in [7],
namely just the special case characterized by the parameters N = 3, anm = −1/2 considered
in this paper, see (1.3), to which, via (3.1) with (1.5), there correspond the following equations
of type (3.2):

ζ ′′
n = −

3∑
m=1,m�=n

ζ ′
nζ

′
m/(ζn − ζm). (3.5)

Then, by proceeding in close analogy to [7], we obtained [8] the following single third-
order nonlinear autonomous ODE, which we therefore claimed [8] should possess the super-
Painlevé property, namely only possess solutions that are entire functions of the independent
variable τ :

4(z′′′)3(z′ + V ) − 3(z′′′z′′)2 + k[3z′′z − 2(z′ + V )(z′ − 2V )]2 = 0 z ≡ z(τ ). (3.6)

Also this ODE features the two arbitrary constants V, k, which—whenever they do not
vanish—could clearly be replaced by unity via a ‘cosmetic’ rescaling of (dependent and
independent) variables. We also noted [8] that, if V = 0, by setting

z(τ ) = exp

[∫ τ

dτ ′u(τ ′)
]

(3.7a)

this third-order autonomous ODE, (3.6), gets reduced to the following second-order
autonomous ODE:

(u′′ + 3u′u + u3)2(4u′′u + 6u′u2 − 3u′2 + u4) + k(3u′ + u2)2 = 0 u ≡ u(τ). (3.7b)

And we also pointed out [8] that another avatar of the ODE (3.6) is obtained by differentiating
it with respect to the independent variable τ and by then using (3.6) to eliminate the constant
k. The advantage of the resulting fourth-order autonomous ODE is that it reads

z′′ ′′ = R(z′′′, z′′, z′, z;V ) z ≡ z(τ ) (3.8a)

with R(z′′′, z′′, z′, z;V ) a rational function of all its five arguments:

R(z′′′, z′′, z′, z;V ) = z′′′[2z′′′z − z′′(z′ − 2V )][3z′′z − 2(z′ + V )(z′ − 2V )]−1. (3.8b)

The paper [8] reporting these findings and their proof was not published and is now
superseded by the present one, which provides the general solution of the equations of motion
(3.5), confirming indeed that the solutions of the nonlinear ODEs (3.6) and (3.8) are entire
(albeit relatively trivially so, see below).

The starting point of our analysis is (3.5), which can be rewritten as follows [7]:

ζ ′′
± = −(ζ ′

+ + V )(ζ ′
− + V )/(ζ± − ζ∓) + (ζ ′

± + V )(ζ ′
+ + ζ ′

− − V )/(2ζ± + ζ∓) (3.9)

by setting, consistently with the notation of section 1,

ζ+(τ ) = ζ1(τ ) − Z(τ) ζ−(τ ) = ζ2(τ ) − Z(τ) (3.10)

where Z(τ) is the centre-of-mass coordinate,

Z(τ) = [ζ1(τ ) + ζ2(τ ) + ζ3(τ )]/3 (3.11)

hence it evolves linearly, see (1.6).
Note that (3.9) represents two (coupled) ODEs, which are obtained by taking

systematically the upper, respectively the lower, sign whenever a double sign appears, and
which will be hereafter referred to as (upp3.9), respectively (low3.9). This compact way
of writing the two equations (3.9) was not used in [8], where a different notation was
(unfortunately) used; had we used this more symmetrical notation we might not have missed
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the crucial observation, see below, which emerges as a consequence of the symmetry among
the ODEs satisfied by ζ+ and ζ−.

Associated with the system of two ODEs (3.9) is the constant of motion [7]

K = (ζ ′
+ + V )(ζ ′

− + V )(ζ ′
+ + ζ ′

− − V )(ζ+ − ζ−)−1(ζ+ + 2ζ−)−1(ζ− + 2ζ+)
−1. (3.12)

We now solve (upp3.9) for ζ ′
−, insert the resulting expression in (3.12) and thereby get,

after some algebra, the following expression for K:

K = −[4(ζ+ + 2ζ−)3(ζ ′
+ + V )]−1{[ζ+(ζ+ + 2ζ−)]2 − [3ζ ′′

+ ζ+ − 2(ζ ′
+ + V )(ζ ′

+ − 2V )]2}.
(3.13)

Next, we differentiate (upp3.9) with respect to the independent variable τ , then use
(low3.9) to eliminate ζ ′′

− (on the right-hand side), then, as above, use (upp3.9) to eliminate ζ ′
−

(on the right-hand side), and we thereby obtain (after some cumbersome but straightforward
computations) the following expression for ζ ′′′

+ :

ζ ′′′
+ = 3[4(ζ+ + 2ζ−)2(ζ ′

+ + V )]−1{[ζ ′′
+ (ζ+ + 2ζ−)]2 − [3ζ ′′

+ ζ+ − 2(ζ ′
+ + V )(ζ ′

+ − 2V )]2}.
(3.14)

Now a comparison of (the right-hand sides of) (3.13) with (3.14) yields the simple (linear!)
relation

ζ ′′′
+ = −3K(ζ+ + 2ζ−). (3.15a)

The insertion of the expression of the combination ζ+ + 2ζ− entailed by this formula,
(3.15a), on the right-hand side of (3.14) yields the third-order ODE (3.6) with

z(τ ) ≡ ζ+(τ ) (3.16a)

k = 27K2. (3.16b)

This ends the derivation of (3.6), as reproduced from [8].
But at this point a crucial—and a posteriori obvious—remark becomes relevant (the

credit for which is given in the acknowledgments section): given the evident symmetry of the
system of two coupled ODEs (3.9) under the exchange of ζ+ with ζ−, and the no less evident
antisymmetry under such an exchange of definition (3.12) of K , it is clear that the following
equation analogous to (3.15a) also holds:

ζ ′′′
− = 3K(ζ− + 2ζ+). (3.15b)

And it is then clear (see below) that the two ODEs (3.15) entail that each of the two unknown
functions ζ+(τ ) and ζ−(τ ) satisfies a very simple, decoupled, sixth-order linear ODE, the
general solution of which is a linear combination of six exponentials (featuring six arbitrary
constant coefficients). This is, of course, sufficient to conclude, see (3.16a), that the solution
of the nonlinear third-order ODE (3.6) must have the same form; hence this nonlinear ODE
does indeed possess the super-Painlevé property, but rather trivially so (in particular, it does
not define a new transcendental function). However, the solution of this third-order nonlinear
ODE, (3.6), can only contain three arbitrary constants; hence, the general solution of the
sixth-order linear equation satisfied by z(t) shall also satisfy the third-order nonlinear ODE
(3.6) only if its six coefficients satisfy three relations, so that only three of them can take
arbitrary values. The task of obtaining these relations is in principle trivial, but in practice
quite cumbersome.

We are actually interested in an analogous task, since our main purpose now is to solve
the system of two coupled nonlinear ODEs (3.9) for the two unknown functions ζ+(τ ) and
ζ−(τ ), the general solution of which must contain four arbitrary constants. This task is also
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trivial in principle, but in practice it is sufficiently hard to justify providing here a brief record
of how it was achieved.

The two linear ODEs (3.15) were summed and subtracted to yield

σ ′′′ = 3Kδ δ′′′ = −9Kσ (3.17)

where we introduce conveniently the sum and difference of the two unknowns ζ+ and ζ−,

σ(τ) = ζ+(τ ) + ζ−(τ ) δ(τ ) = ζ+(τ ) − ζ−(τ ). (3.18)

The two ODEs (3.17) of course entail

σ ′′′ ′′′ = −kσ δ′′′ ′′′ = −kδ (3.19)

with the constant k defined by (3.16b). The general solution of these two decoupled sixth-order
linear ODEs reads

σ(τ) =
6∑

j=1

sj exp{2λ exp[i(2j + 1)/6]τ } (3.20a)

δ(τ ) =
6∑

j=1

dj exp{2λ exp[i(2j + 1)/6]τ } (3.20b)

with

(2λ)6 = k (3.21)

(this notation is chosen for consistency with that used in section 1, see (1.4)), and it clearly
also entails, via (3.18),

ζ±(τ ) = 1

2

6∑
j=1

(sj ± dj ) exp{2λ exp[i(2j + 1)/6]τ }. (3.22)

Here the 12 constants sj , dj are a priori arbitrary, but simple relations among them are
obviously entailed by the ODEs (3.17). Using these relations it is easy to arrive at the
following expressions for the two unknown functions ζ+(τ ) and ζ−(τ ):

ζ±(τ ) = a cos(2λτ + 2α ± π/3) + b cos(λτ − β ∓ π/3) exp(−
√

3λτ)

+ c cos(λτ + γ ∓ π/6) exp(
√

3λτ) (3.23)

where the notation has again been adjusted to fit eventually with the solution (1.7) and (1.8).
These expressions, (3.23), now contain the seven, a priori arbitrary, constants

a, b, c, α, β, γ, λ. The final step is to impose that these expressions, (3.23), satisfy the
ODEs (3.9), and to thereby determine, see (1.7) and (1.8), the values of the constants c, γ, λ

in terms of the others (and of the constant V that appears in (3.9)). This has been achieved by
eliminating firstly the denominators in (3.9), then inserting expressions (3.23) in the ODEs so
obtained and finally setting exp(iλτ) = u, exp(

√
3λτ) = v. The resulting expressions are then

(after elimination of the denominators) just polynomial in the two quantities u and v, which
can then be treated as independent variables. Hence each coefficient of these polynomials
must vanish. One can then firstly set to zero the coefficients that appear simpler, obtain thereby
explicit expressions for c, γ, λ and then verify that, as it were ‘miraculously,’ all the other
coefficients also vanish. The computations we just described are straightforward but quite
cumbersome, and we were only able to perform them with the help of MAPLE. In this manner
the solution (1.4)–(1.8) was arrived at.
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Note added in proof. After this paper was completed and submitted for publication it was discovered that the problem
characterized by the equations of motion (1.1) and (1.2) can also be solved in the more general N -body ‘nearest-
neighbour’ case when the coupling constants anm vanish unless |n − m| = 1 and equal minus one half otherwise,
which reduces for N = 3 to the case treated above. For more information on the history of this more general problem
and on its solution, the interested reader is referred to a forthcoming publication [9].
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Calogero F 2003 Theor. Math. Phys. 134 139 (erratum)
[8] Calogero F A super-Painlevé third-order ODE unpublished
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